Notes

Inhibitory Effects of Bufadienolides on Interleukin-6 in MH-60 Cells

Akiko Enomoto,^{†,‡} Mun-Chual Rho,^{†,§} Kanki Komiyama,[†] and Masahiko Hayashi^{*,†}

The Kitasato Institute, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8642, Japan, and Fancl Co., Ltd., Central Research Laboratory, 12-13, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan

Received January 24, 2004

Derivatives of bufogenin isolated from the skin of the Chinese toad, *Bufo bufo gargarizans* Cantor ("Ch'an Su"), and several semisynthetic derivatives of 20β , 21β -epoxy-resibufogenin (13) have been evaluated for interleukin-6 (IL-6) antagonistic activity due to their growth-inhibitory activities on IL-6-dependent MH-60 cells. Among the naturally derived compounds (1–17), 20S, 21-epoxy-resibufogenin formate (1) showed potent inhibitory activity on the IL-6-dependent growth of MH-60 cells. Epoxide groups at both the C-14, C-15 and C-20, C-21 positions are required to exhibit this type of activity. Compounds acetylated at the C-16 position (7 and 9–11) showed a loss of activity. An oxo group at the C-3 position (8, 14, and 15) resulted in cytotoxicity for both cell lines. Stereochemistry is important for selectivity on suppression of IL-6 activity. Among the semisynthetic derivatives (18–25) of 13, compound 19, with an acetyl group introduced at the C-3 position in comparison to 13, demonstrated considerable growth inhibition of IL-6-dependent MH-60 cells.

Cytokines play important biological roles in homeostasis, defense mechanisms, and immune regulation. One multifunctional cytokine, interleukin-6,¹ is involved in the regulation of immune reactions,^{2,3} hematopoiesis,^{4,5} and the acute-phase response.^{6,7} However, its excessive production plays a major role in cancer cachexia,⁸ Castleman's disease,⁹ rheumatoid arthritis,¹⁰ hypercalcemia,¹¹ and multiple myeloma.¹¹ For this reason, modulation of this cytokine function may be useful for treating the above diseases.

We have isolated 20*S*,21-epoxy-resibufogenin-3-formate $(1)^{12}$ from "Ch'an Su" (obtained from the skin of *Bufo bufo gargarizans* Cantor) in the course of a screening program for IL-6 inhibitors from natural products. Compound 1 competitively suppressed IL-6 activity in a dose-dependent fashion, but it did not affect the activity of various cytokines (IL-2, IL-3, IL-4, IL-8, IL-11, TNF, NGF, LIF). Furthermore, a receptor binding assay showed an increase in unbound (free) IL-6 in a dose-dependent manner by pretreatment with 1 on the IL-6 receptor (IL-6R), suggesting that 1 suppresses binding of IL-6 to IL-6R.¹³

We were able to isolate 17 compounds from a crude extract of "Ch'an Su" (1-17) and obtained eight semisynthetic derivatives (18-25). Compounds 1-17 are based on the parent compound bufalin (3). The present study examined the inhibitory effects of these compounds and the structure-activity relationship of 1 on IL-6 activity. These compounds were tested for their anti-IL-6 activity using IL-6-dependent and IL-6-independent MH-60 cells.

Table 1 shows the inhibitory effect of these compounds on IL-6 activity. Compound **13** showed weak IL-6 inhibitory activity. When compared with **13**, compounds **4**–**6** have an epoxide group at the C-14 and C-15 or the C-20 and C-21 positions. The potency of **4** increased slightly, while the

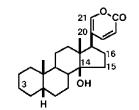
 Table 1. Cell Growth Inhibition of Bufalin-Related Compounds from "Ch'an Su" and Semisynthetic Derivatives of 20,21-Epoxy-resibufogenin

	IC ₅₀ val	μ (μ M)
compound	ind^{a}	dep. ^b
1	>58.4	8.9
2	12.9	5.6
3	>64.8	31.9
4	>65.1	22.9
5	>62.2	>62.2
6	>62.2	>62.2
7	>56.2	>56.2
8	8.4	2.4
9	>56.3	>56.3
10	>54.2	>54.2
11	>54.2	>54.2
12	45.0	18.3
13	>62.5	24.8
14	4.3	1.3
15	8.3	4.3
16	>58.7	>58.7
17	>60.7	>60.7
18	21.9	14.3
19	>56.6	5.3
20	17.5	2.0
21	>54.8	9.4
22	19.1	6.4
23	>53.2	11.6
24	34.0	18.1
25	>53.2	6.8
		1 . 1.577.0

^a IL-6-independent MH-60 cells. ^b IL-6-dependent MH-60 cells.

potency of **5** and **6** did not. When compared with **4**, a formate group at the C-3 position as in **17** resulted in no inhibitory activity, but a formate at the C-3 position as in **13** indicated selectivity on IL-6 activity. These findings suggest that both the epoxides at the C-14, C-15 and C-20, C-21 positions in the structure are required to exhibit inhibitory activity.

Compound 11, equivalent to 13 with an acetoxy group at the C-16 position, showed no inhibitory activity or cytotoxicity. Similarly, no activities were observed for com-


10.1021/np049950e CCC: \$27.50 © 2004 American Chemical Society and American Society of Pharmacognosy Published on Web 11/12/2004

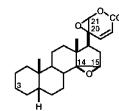
^{*} To whom correspondence should be addressed. Tel: +81-3-5791-6356. Fax: +81-3-5791-6357. E-mail: mhayashi@lisci.kitasato-u.ac.jp.

[†] The Kitasato Institute.

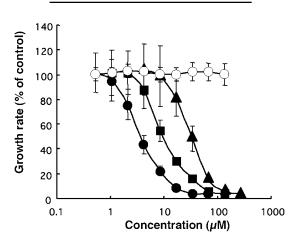
[‡] Fancl Co., Ltd.

[§] Korea Research Institute of Bioscience and Biotechnology.

compound	substituent (position)				
compound	3	14	15	16	20 21
.1	восон	0	•	Н	"" as Change
2	βOCOH	0	•	н	0
3	βOH	βOH	н	н	Λ^{26}
4	βOH	0	*	н	Λ^{26}
5	βOH	βОН	Н	н	o
6	βOH	βОН	н	н	^{чин} О 1 ³³⁴
/	βOH	βОН	н	4OCOCH3	Λ^{26}
8	_0	0	•	Н	Λ^{26}
9	βOH	0	•	4OCOCH3	Λ^{26}
.10	βOH	` 0	•	4OCOCH3	` _
11	βOH	0	•	4OCOCH ₃	"" O""
12	βOH	0	•	н	` `
13	βOH	0	•	н	"" (Juni
14	-0	0	•	н	` 0
15	-0	` o`	•	Н	"****O"""
.16	βOCOCH	, ` `	•	Н	Λ^{20}
17	βOCOH	0	•	н	Λ^{26}


pounds 7, 9, and 10, which all have an acetoxy group at the C-16 position. These results indicate that the C-16 position must be unsubstituted for inhibitory activity.

When compared with **13**, compounds **14** and **15** have a carbonyl group at the C-3 position and exhibited cytotoxic activity for both types of MH-60 cells, whereas **1** and **13** showed an obvious selectivity for IL-6 activity. These results suggest that an ester group at the C-3 position among these compounds plays an important role in determining the degree of inhibitory activity.


We also examined the activity of semisynthetic derivatives (18-25) of 12 and 13. Table 1 shows that the introduction of an acetate group in the C-3 position resulted in potent antiproliferative activity on IL-6-dependent cells. This activity decreased according to the increase in the carbon chains of fatty acids at the C-3 position such as propionate (20, 21), butyrate (22, 23), and isobutyrate (24, 25).

Compounds with R stereochemistry (2, 18, 20, 22, and 24) were found to possess potent cytotoxicity, not only for IL-6-dependent MH-60 cells but also for IL-6-independent MH-60 cells. In contrast, the S isomers at C-20 and C-21 showed a clear IL-6-selectivity. These results suggest that stereoisomerism (1, 19, 21, 23, and 25) is important for selectivity. We infer that there is a difference in the affinity for the IL-6 receptor or metabolism by a metabolic enzyme such as epoxidase. Further investigation is necessary to clarify this stereoselectivity in detail.

Table 3.

compound	substituent (position)			
	3	20 21		
.18	βOCOCH ₃	`		
19	βOCOCH ₃	"**O"**		
20	$\beta OCO(CH_2)_2CH_3$	`		
21	$\beta OCO(CH_2)_2CH_3$	"•••O"		
22	βOCO(CH ₂) ₃ CH ₃	0		
23	$\beta OCO(CH_2)_3CH_3$	"*°°*		
24	β OCOCH (CH ₃) ₃	`		
25	βOCOCH (CH ₃) ₃	^{***} 0***		

Figure 1. Effect of **19** on IL-6-dependent cell growth. IL-6-dependent MH-60 cells were incubated with graduated concentrations of **19** (\bullet), **1** (\blacksquare), or madindoline A (\bullet) for 72 h in the presence of rhIL-6. Independent MH-60 cells were also incubated with graduated concentrations of **19** (\bigcirc).

The most promising compounds in this series were examined further for growth inhibition of IL-6-dependent MH-60 cells. Table 1 and Figure 1 show that **19** exhibited more inhibitory activity than either **1** or madindoline A, an IL-6 inhibitor isolated from cultured broth of *Streptomyces*.¹⁴ The present results suggest that **19** might be a valuable IL-6 inhibitor and should be considered for additional biological testing because madindoline A suppressed bone resorption in our experiment that might lead to osteoporosis.¹⁴

Experimental Section

Reagents and Cell Lines. Recombinant human interleukin 6 (rhIL-6) was purchased from Sigma-Aldrich Corp. (St Louis, MO). Prof. T. Hirano, Osaka University (Osaka, Japan), kindly supplied IL-6-dependent MH-60 cells, which are hybridomas of mouse B cells and myeloma cells. The IL-6-independent MH-60 cell line was established by gradually decreasing rhIL-6 concentration in the medium.¹⁴

Measurement of Growth Inhibitory Activity. IL-6dependent and -independent MH-60 cells were maintained in suspension in RPMI 1640 medium supplemented with 10% fetal calf serum with or without 0.5 ng/mL of rhIL-6, respectively. Cells (0.5 × 10⁴ cells) suspended in 200 μ L of the medium with or without rhIL-6 were plated in a 96-well culture plate (Corning, Inc.) and incubated at 37 °C in a 5% CO₂-95% air atmosphere. After 24 h incubation, cells were treated for 72 h with various concentrations of compounds. Cell growth was determined by the tetrazolium salt method (MTT assay).¹⁵ Data are represented as mean values with standard errors of three to four experiments.

Test Compounds. Bufalin (3) and 16 related compounds isolated from crude extract of "Ch'an Su" $(1-17^{16-19})$ and eight semisynthetic derivatives of $1 (18-25^{13,20})$ were kindly supplied by Professor Y. Kamano, Kanagawa University (Hiratsuka, Japan).

These compounds were 20,21-epoxy-resibufogenin-3-formate (1 and 2), bufalin (3), resibufogenin (4), 20,21-epoxybufalin (5 and 6), bufotalin (7), 3-oxo-resibugogenin (8), cinobufagin (9), 20,21-epoxy-cinobufagin (10 and 11), 20,21-epoxy-resibufogenin (12 and 13), 3-oxo-20,21-epoxy-resibufogenin (14 and 15), resibufogenin-3-acetate (16), and resibufogenin-3-formate (17).¹³

Acknowledgment. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan. We are grateful to A. Fukami of the Kitasato Institute for biological evaluation.

References and Notes

- Akira, S.; Hirano, T.; Taga, T.; Kishimoto, T. FASEB J. 1990, 4, 2860– 2867.
- Matsuda, T.; Yamasaki, K.; Taga, T.; Hirano, T.; Kishimoto, T. Int. Rev. Immunol. 1989, 5, 97–109.
 Romagnani, S. Annu. Rev. Immunol. 1994, 12, 227–245.
- (4) Sui, X.; Tsuji, K.; Tajima, S.; Tanaka R.; Muraoka, K.; Ebihara, Y.; Ikebuchi, K.; Yasukawa, K.; Taga, T.; Kishimoto, T.; Nakahata, T. J. Exp. Med. 1996, 183, 837–844.

- (5) Eaves, C. J.; Cashman, J. D.; Kay, R. J.; Dougherty, G. J.; Otsuka, T.; Gaboury, L. A.; Hogge, D. E.; Lansdorp, P. M.; Eaves, A. C.; Humphries, R. K. *Blood* **1991**, *78*, 110–117.
- (6) Dowton, S. B.; Waggoner, D. J.; Mandl, K. D. Pediatr. Res. 1991, 30, 444-449.
- (7) Ramadori, G.; Van Damme, J.; Rieder, H.; Meyer zum Buschenfelde, K. H. Eur. J. Immunol. 1988, 8, 1259–1264.
- (8) Strassmann, G.; Masui, Y.; Chizzonite, R.; Fong, M. J. Immunol. 1993, 150, 2341–2345.
- (9) Yoshizaki, K.; Matsuda, T.; Nishimoto, N.; Kuritani, T.; Taeho, L.; Aozasa, K.; Nakahata, T.; Kawai, H.; Tagoh, H.; Komori, T. Blood 1989, 74, 1360-1367.
- (10) Takagi, N.; Mihara, M.; Moriya, Y.; Nishimoto, N.; Yoshizaki, K.; Kishimoto, T.; Takeda, Y.; Ohsugi, Y. Arthritis Rheumatol. 1998, 41, 2117–2121.
- (11) Roodman, G. D. Cancer 1997, 80, 1557–1563.
- (12) Kamano, Y.; Nogawa, T.; Yamashita, A.; Hayashi, M.; Inoue, M.; Drasar, P.; Pettit, G. J. Nat. Prod. 2002, 65, 1001–1005.
- (13) Hayashi, M.; Rho, M. C.; Fukami, A.; Enomoto, A.; Nonaka, S.; Sekiguchi, Y.; Yanagisawa, T.; Yamashita, A.; Nogawa, T.; Kamano, Y.; Komiyama, K. J. Pharmacol. Exp. Ther. **2002**, 303, 104–109.
- (14) (a) Hayashi, M.; Rho, M. C.; Enomoto, A.; Fukami, A.; Kim, Y. P.; Kikuchi, Y.; Sunazuka, T.; Hirose, T.; Komiyama, K.; Omura, S. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 14728–14733. (b) Hayashi, M.; Kim, Y. P.; Takamatsu, S.; Enomoto, A.; Shinose, M.; Takahashi, Y.; Tanaka, H.; Komiyama, K.; Omura, S. J. Antibiot. **1996**, *49*, 1091– 1095.
- (15) Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Cancer Res. **1987**, 47, 936–942.
- (16) Calveriey, M. J.; Jones, G. In *The Antitumor Steroids*; Buckenstaff, R. T., Ed.; Academic Press: New York, 1992; pp 275–281.
- (17) Kamano, Y.; Pettit, G. R.; Inoue, M.; Tozawa, M.; Komeichi, Y. J. Chem. Res. (S) 1977, 78–79.
- (18) Kamano, Y.; Kotake, A.; Hashima, H.; Inoue, M.; Morita, H.; Takeya, K.; Itokawa, H.; Nandachi, N.; Segawa, T.; Yukita, A.; Saitou, K.; Katsuyama, M.; Pettit, G. R. *Bioorg. Med. Chem.* **1998**, *6*, 1103–1115.
- (19) Nogawa, T.; Kamano, Y.; Yamashita, A.; Pettit, G. R. J. Nat. Prod. 2001, 9, 1148–1152.
- (20) Komiyama, K.; Hayashi, M.; Fukami, A.; Kamano, Y. Jpn. Patent JP2002265493, 2002.

NP049950E